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Realistic computations of flows induced by synthetic jets in multiple flow conditions are studied with an unsteady

preconditioned Reynolds-averaged Navier–Stokes solver with deforming meshes. Deforming meshes suitable for

structured grid systems are used to simulate the motion of diaphragms driven at a given frequency.With deforming

meshes, a boundary-conditionmodel is not necessary for synthetic jet calculations. To obtain time-accurate solutions

with a grid system under deformation, the geometric conservation law is employed. Numerical calculations of three

cases of the Langley Research Center Workshop Computational Fluid Dynamics Validation of Synthetic Jets and

Turbulent Separation Control workshop are carried out, and the computational results are compared with the

experimental data. The results indicate the effectiveness of the current method in synthetic jet flow computations.

Nomenclature

F = inviscid flux vector
f = frequency
Fv = viscous flux vector
Jn = nth-order Bessel function of the first kind
k = normal velocity component relative to moving

computational cell boundary
M = Mach number
p = gauge pressure
Qp = primitive flow variable vector
S = source vector
V = control volume
W = conservative flow variable
� = preconditioning matrix
�V = outer surface of a control volume
�m = molecular viscosity
�t = turbulent viscosity
� = grid velocity
�ij = shear stress tensor
�, � = time-integration method identifier
 = net volume swept by a moving computational cell
�i = total energy flux vector

I. Introduction

F OR years, many studies in the aerospace field have focused on
the advantages of active flow control. Flow control to delay flow

separation, to increase lift, or to enhance thrust, however, is
obtainable only with a cost increase and a weight increase. For
instance, traditional boundary-layer control through steady suction
or blowing is effective in increasing lift-to-drag ratios of airfoils and
has been implemented in production aircraft such as the Lockheed
F-104. However, successful implementation of steady suction or
blowing control is limited due to the complexity and weight of the
flow-control systems. In recent years, active flow control using

synthetic jets has received wide attention due to its superiority to
other flow-control devices; its merits include low cost, compact
design, and lack of external apparatus. Synthetic jets synthesize
incoming and outgoing air through an orifice via slots mounted on
wings and controlled by actuators, which means that there is no need
of any other mass source. The actuation frequency and waveform of
the synthetic jets can usually be customized for a particular flow
configuration. Many researchers have studied and tested these
synthetic jets in a variety of applications. The effectiveness of a zero-
net-mass flux device in flow control has been proven experimentally
and numerically.

Most of the early investigations on synthetic jets relied on
empirical approaches because of the lack of observations and
physical explanations for the flowfield induced by the synthetic jets.
Among those studies, Smith and Glezer [1] investigated the
characteristics of synthetic jets by synthesizing a plain turbulent jet
with a flexible diaphragm in a sealed cavity. They showed
experimentally how the synthetic jets developed through the
interactions of a series of counter-rotating vortex pairs that formed at
the edge of an orifice. They also demonstrated jet vectoring with the
combination of a primary conventional rectangular air jet and a
synthetic jet [2]. They concluded that the subsequent formation of a
low-pressure region between the jets resulted in deflection of the
primary jet toward the actuator jet without an extended control
surface, and that the formation of the low-pressure region was
balanced by a force on the primary jet conduit. Chen et al. [3]
demonstrated that synthetic jet actuators could enhance mixing in a
gas turbine combustor. They used two streams of different
temperatures to simulate mixing in a dilution zone. The temperature
distribution downstream of the synthetic jet was measured to
determine the effectiveness of mixing. Their experiments showed
that synthetic jet devices could improve mixing in a turbine engine
combustor. Smith et al. [4] showed that a synthetic jet located near the
leading edge of a thick airfoil could make a separated shear layer
reattach on the upper surface of the airfoil at stall. When compared
with the pressure distribution over the airfoil without flow control,
the lift coefficient more than doubled while the drag coefficient was
reduced by a factor of two. They also investigated the effect of jet
location and amplitude on the separation efficiency. It was
demonstrated that as the position of the jet approached the separation
point in the stalled flow, the jet strength required to make the
separated flow attach decreased by more than an order of magnitude.

With the advances in computational fluid dynamics (CFD) and
computer technology, numerical simulations of unsteady flows
around complex geometries have become possible. The results of
these computations have been found to agree well with experimental
data. However, most of the numerical studies were done without
the benefit of experimental research. Recently, numerical research
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groups and experimental research groups have recognized the need
for mutual exchange of opinions as well as of results. One of the
efforts was the Langley Research Center Workshop CFDValidation
of Synthetic Jets and Turbulent Separation Control (CFDVAL2004)
workshop, which was held inWilliamsburg, Virginia, in 2004.Well-
documented experiments on synthetic jets over three types of
externalflow provide a database that can be used for the development
of CFD techniques capable of simulating separation and control of
flows. This database provides challenging test cases for CFD
validation due to arbitrarily curved geometry, unsteady separation
and reattachment, and a Reynolds-number separation bubble. The
experimental data and theworkshop results weremade available on a
public website to widen the community of researchers interested in
active flow control using synthetic jets.

Rumsey et al. [5,6] collected the numerical results and published
two excellent review papers in 2004 and 2008. Yamaleev and
Carpenter [7] showed that three-dimensional synthetic jet flow
problems could be solved with the quasi-one-dimensional Euler
equations. Based on their observations, they suggested that this
model could be used for two-dimensional or three-dimensional
computations for computational efficiency. Similarly, Vatsa and
Turkel [8] and Park et al. [9] performed two-dimensional unsteady
Reynolds-averaged Navier–Stokes (URANS) simulations of
synthetic jets with the boundary models. These three previous
studies were conducted with some geometric approximation of the
actuators and with boundary-condition models that mimicked
synthetic jet flow. Cui and Agarwal [10] performed both two-
dimensional and three-dimensional URANS simulations for
synthetic jets including the cavity of case 1. Also, they applied the
same methodology to case 2 of the CFDVAL2004 workshop, which
is three-dimensional [11]. In addition, Balakumar [12] analyzed case
3with the Reynolds-averagedNavier–Stokes (RANS) equations and
a boundary-condition model. However, these studies adopted
boundary-conditionmodels to simulate thevelocity profile generated
by the oscillatingmotion of the diaphragms. Although the boundary-
condition models have been successfully used to compute synthetic
jet flows, the methods rely on an approximation of the boundary
conditions that determine the flows. Because of the inability to
accurately account for the geometry of the actuator, those
computations cannot include viscous effects associated with the flow
through the orifice, or the near-field flow physics caused by the
interaction of the external boundary layer and the actuator. Yoo et al.
[13] presented a two-dimensional computation of case 1 of the
CFDVAL2004 workshop using an exact jet model. The exact model
did not employ any boundary-condition model. Instead, the flow
induced by the movement of the diaphragm was computed directly
with a deforming mesh inside the synthetic jet. The geometry
conservation law was used to ensure the conservation of the
freestream with the deforming grid.

The objective of our work is to show the ability to simulate
synthetic jet flows, including the full three-dimensional shape of the
actuator, using the exact jet model. Flows induced by synthetic jets
into quiescent air, into a turbulent crossflow boundary layer, and into
a turbulent separation flow are investigated in this study. To simulate
the flows inside the cavity, a transfinite interpolation (TFI) method
with a linear blending function is adopted to automatically generate
grids that deform according to the oscillation of the diaphragm.
Simultaneously, the volume of the cell is evaluated so that it satisfies
the geometric conservation. For case 1 of the CFDVAL2004
workshop, the motion of the circular diaphragm is modeled as the
solution of a two-dimensional wave equation in polar coordinates.
For cases 2 and 3, the motion is modeled by combining the rigid-
bodymotion and the elastic motion. Time-dependent solutions to the
evolution of a synthetic jet are obtained by solving the time-
dependent compressible RANS equations with a two-equation
turbulence model. Because the range of the Mach number extends
from the incompressible to the compressible regimes, the
preconditioning method of Weiss and Smith [14] is used to perform
an accurate simulation. Menter’s k-! shear stress transport (SST)
turbulence model [15] is used to account for the turbulent nature of
the flows. Detailed comparisons of the phase-averaged results and

the time-averaged results of the velocity components and the
pressure coefficient are presented. The effects of the exact model on
the synthetic jet simulations are discussed.

II. Governing Equations and Numerical Methods

A. Preconditioned Reynolds-Averaged Navier–Stokes Equations

The unsteady RANS equations are chosen as governing equations
for the synthetic jet problems. As mentioned in the introduction, the
preconditioning method is applied to take account of the low Mach
number region. The integral form of the governing equations over a
moving control volume, V, including a fictitious time term for dual
time-stepping method, is given by

�
d

d�

Z
V

Qp dV �
d

dt

Z
V

W dV �
Z
�V

F � n̂ dS�
Z
�V

Fv � n̂ dS

�
Z
V

S dV (1)

where the conservative solution vector, W, the primitive solution
vector,Qp, the inviscidflux vector,F, the viscousflux vector,Fv, and
the source vector, S, are defined by

W �

�
�u
�v
�w
e
�K
�!

2
666666664

3
777777775
; Qp �

p
u
v
w
T
K
!

2
666666664

3
777777775
;

F� �F �W�� � n̂�

�k
�ku� pnx
�kv� pny
�kw� pnz
�e� p�k� p�t

�kK
�k!

2
666666664

3
777777775
;

Fv � Fv � n̂�

0

nx�xx � ny�yx � nz�zx
nx�xy � ny�yy � nz�zy
nx�xz � ny�yz � nz�zz
nx�x � ny�y � nz�z

��m � �K�t�n̂ � rK
��m � �!�t�n̂ � r!

2
666666664

3
777777775
; S�

0

0

0

0

0

SK
S!

2
666666664

3
777777775

(2)

Here, k and �t are the relative velocity component normal to the
surfaces of the control volume, and the grid velocity component
normal to the surfaces, respectively. They are defined by the
following:

k� nxu� nyv� nzw � �t (3)

�t � �xnx � �yny � �znz (4)

In addition, �K and �! are the turbulent model constants. As stated
earlier, Menter’s K-! SST turbulence model is used in this study
[15]. The matrix, �, premultiplied by the time derivative term in
Eq. (1), is the preconditioning matrix that is used to reduce the
condition number of the system for low Mach number flows. We
choose the matrix of Weiss and Smith [14] to reduce the stiffness of
the governing equations and to enhance the convergence of the
iterative solutions.

B. Numerical Methods

Upon integrating Eq. (1) over a hexahedron, we have

�
@Qp

@�
� @W
@t
��R (5)
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where the residual vector is given by

R� 1

V

�X
F�S �

X
Fv�S � VS

�
(6)

where �S is the surface of the hexahedron. The inviscid flux in
Eq. (6) is replaced by Roe’s numerical flux [16] for numerical
stability:

F̂ i�1=2 �
1

2
�F�QR

p� � F�QL
p� � �jA�j�QR

p �QL
p�� (7)

where A� is the preconditioned Jacobian matrix of the flux vector F.
MUSCL extrapolation [17] for QR

p and QL
p is used for higher

spatial accuracy. VanAlbada’s limiter is adopted tomaintain the total
variation diminishing property near the sharp solution gradient
region. The gradient theorem is used to compute the derivatives of
flow variables, which are needed to compute viscous terms.

Upon applying the Beam and Warming method [18] and the dual
time-steppingmethod [19] to Eq. (5), the discretization equations are
found to be

�
1� �

2

�
��VW�

�t
� �
2

��VW�n�1
�t

� �
��VQp�l

��
� �Rl�1

� �1 � ��Rn � 0 (8)

where l is the iteration level of the dual time stepping and n is the
physical time level. The time-integrationmethod identifiers are� and
�. Equation (8) becomes a second-order methodwith�� 1, whereas
it becomes a first-order method with �� 0. The Euler implicit
method corresponds to �� 1, whereas the trapezoidal method
corresponds to �� 1=2. In this paper, �� 1 and �� 1 are used,
which yields second-order temporal accuracy. Also, the corrections
are defined by

��VW� � Vn�1Wl�1 � �VW�n;
��VW�n�1 � �VW�n � �VW�n�1;
��VW�l � Vn�1�Wl �Wl�1� (9)

The approximated factorization-alternate direction implicit (AF-ADI)
method [20] along the fictitious time is applied to Eq. (8); that is,

�
D� ���

V
A

�
D�1

�
D� ���

V
B

�
D�1

�
D� ���

V
C

�
�Qp

���� ~R (10)

In Eq. (10), A, B, C, and D are factored operators. The detailed
expression for the operators can be found in [21]. The unsteady

residual vector ~R is given by

~R� 1

Vn�1

��
1� �

2

�
Vn�1Ql � �VQ�n

�t
� �
2

�VQ�n � �VQ�n�1
�t

� �Rl � �1 � ��Rn
�

(11)

The dual time-stepping method can reduce the factorization error as
well as the linearization error associated with the AF-ADI method.
Furthermore, the time lag error due to the explicit boundary-condition
method can be minimized.

Equation (10) is solved with a loosely coupled method. The
loosely coupled method solves the Navier–Stokes equations first
with the turbulent viscosity fixed. Subsequently, the turbulence
model equations are solved with the mean flow quantities fixed. One
of the merits of using the loosely coupled method is the relative
simplicity of implementing the turbulence model equations into the
Navier–Stokes equations. According to Lee and Choi’s work [21],
differences in the stability characteristics of a strongly coupled
method and those of a loosely coupled method are negligible.

III. Deforming Mesh Generation

It is necessary to automatically generate the grid inside the cavity
of the synthetic jet in order to successfully compute flows induced by
the moving diaphragm. In this paper, a TFI method [22] is adopted.
TFI has advantages over other grid-generation methods. It is
comparably fast to run, easy to implement, and suitable for structured
meshes. The linear blending function with the arc-length control
function [23] is chosen for computational efficiency.

IV. Geometric Conservation Law

If only the geometric consideration for the evaluation of the
volume of a computational cell is made when the grid is deforming,
the numerical solutions may not conserve a freestream. The
geometric conservation law, therefore, must be applied to ensure that
a uniform flow is an exact solution to the discretized Navier–Stokes
equations with the grid deforming [24]. Upon plugging the uniform
flow condition, Q� const, into the Navier–Stokes equations, the
integral form of the geometric conservation law is obtained:

@

@t

Z
V

dV �
Z
�V

� � n̂ dS� 0 (12)

By applying the same discretization as that of the Navier–Stokes
equations, we obtain the discretized form of the geometric
conservation law:

Vn�1 � Vn � �

2� � �V
n � Vn�1� � 2�t

2� � f� 
n�1 � �1 � �� ng

(13)

where the net volume swept by the cell,  , is defined by

 � ��t�S�i�1=2 � ��t�S�i�1=2 � ��t�S�j�1=2 � ��t�S�j�1=2
� ��t�S�k�1=2 � ��t�S�k�1=2 (14)

The computational method used in this paper has been extensively
validated for a number of unsteady flows in which the deforming-
mesh method was applied to the oscillatory motion of wings and
airfoils. The details of this validation can be found in [25].

V. Computations of Flows Induced by Synthetic Jets

A. Case 1 of the CFDVAL2004 Workshop

Case 1 of the CFDVAL2004 workshop is chosen as the first
example to show the accuracy of the current method. A diaphragm
located on the left side of the cavity of a synthetic jet oscillating at a
frequency of 450 Hz creates an alternating incoming and outgoing
flow through the cavity and the neck, resulting in a jet of net zero
mass flow rate. The jet comes out of the slot and interacts with the
surrounding quiescent air. Even though the aspect ratio of the slot is
28, the end effects of the slot were found to be prominent [26]. In this
paper, therefore, we conduct a three-dimensional simulation with a
three-dimensional multiblock-structured grid system. The grid
system with which the end effects of the slot can be calculated was
downloaded from the website of the CFDVAL2004 workshop.
However, the block structure of the grid system is reorganized so that
the automatic generation of the grid can be donemore easily.Only the
blocks inside the cavity are allowed to deform as the diaphragm
moves, while the other blocks are kept unchanged. The total number
of grid points is approximately 4.3 million. Cui and Agarwal [10]
conducted a grid-convergence study by doubling the grid resolution
of a baseline-grid systemof the externalflow region in the ydirection.
The number of grid points of the baseline-grid system was slightly
more than half a million, which is quite coarse when compared with
the grid system used in this paper. They, however, concluded that
their solution using the baseline-grid system was grid independent.

A characteristic far-field boundary condition is applied along the
left, right, and top sides of the exterior flow domain, while a nonslip
boundary condition is imposed at the diaphragm, the walls of the
actuator including the nozzle neck, and the bottom of the exterior
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field. The movement of the circular diaphragm is modeled with the
solution, u�r; t�, to a two-dimensional wave equation:

@2u

@t2
� c2

�
@2u

@r2
� 1

r

@u

@r

�
(15)

with the initial conditions

u�r; 0� � A�R2 � r2�; ut�r; 0� � 0 (16)

and the boundary condition

u�R; t� � 0 for all t 	 0 (17)

The initial and the boundary conditions imply that the membrane is
fixed along the boundary of the diaphragm, r� R, and that the initial
condition is the maximum displacement of the membrane. The value
of A is determined so that the experimental peak velocity is matched.
If the stroke of the diaphragm had been known, no numerical test
would have been required to determine the value of A. Using the
method of separation of variables, the solution that satisfies the initial
and the boundary conditions is found to be

u�r; t� �
X1
m�0

amJ0

�
	m

r

R

�
cos	mct (18)

where Jn is the nth order of the Bessel function, and 	m is the zero of
theBessel function. The coefficients of the Fourier–Bessel series,am,
are given as the following equation:

am �
2

R2J21�	m�

Z
R

0

rf�r�J0
�
am
r

R

�
dr (19)

TheReynolds number, based on the peak jet velocity and thewidth
of the slot, is 2800. The number of the subiterations for the dual time-
stepping method is set to 60. To remove any transient behavior of the
solution, 10 periods of computation are performed, and the last two
periods are used for comparison with the experimental data. Time-
accurate computations are done at every 0.5 deg phase angle, which
results in 720 time-accurate computations over one period. A simple
trapezoidal integration of the solution over the two periods is used to
obtain the time-averaged solution.

In Fig. 1a, the vertical velocity profile at the slot center is plotted
over a cycle. This figure is used to determine the amplitude of the
oscillation of the diaphragm. Figure 1b depicts the time average of
the vertical velocity profile over a period. In these figures, the

experimental resultsmeasuredwith particle imagevelocimetry (PIV)
and laser Doppler velocimetry (LDV) are presented for comparison.
Furthermore, the two-dimensional results of Park et al. [9], Cui and
Agarwal [10], and Yoo et al. [13] are presented. Park et al. [9] used a
transpiration boundary condition in which a periodic blowing-and-
suction velocity was specified at the end of the neck, and Cui and
Agarwal [10] used a simple periodic boundary condition in which a
simple sinusoidal velocity was specified at the diaphragm. On the
other hand, Yoo et al. [13] adopted the two-dimensional exact model
for their computation so that the jet velocity profile and its magnitude
were parts of the solution. From the figures, it can be seen that the
results with the three-dimensional exact jet model match the shape of
the vertical velocity history more closely than do the results of any
other methods. Although the simple periodic boundary condition
specified at the diaphragm matches the time-averaged vertical
velocity profile best, it does not follow the time history at the center of
the jet of the experiment. The magnitude of the averaged vertical
velocity increases due to counter-rotating vortices generated at the
expulsion stage. These vortices dissipate as they move upward. All
the computational results capture the essential physics of the
synthetic jet. Figure 2 presents the phase-averaged vertical velocity
components along thevertical distance at y� 1 and 4mm. The three-
dimensional exact model produces the best results for the jet width,
whereas the transpiration boundary-condition model produces the
worst results. Both the two-dimensional and the three-dimensional
exact models give considerably similar results.

The z-vorticity contour plots at every 90 deg at the midspan are
presented in Fig. 3. From these figures, the formation and the
evolution of vortices due to the synthetic jets can be seen. When
the jet is blowing out of the neck, shear layers are formed between
the ejected air and the quiescent air due to the velocity difference.
At the end of the blowing phase, these layers roll up and form a
pair of vortices. During the suction phase, the air is sucked into
the actuator cavity, but the vortices generated during the blowing
phase have convected out far enough away from the neck that
they do not come back into the cavity. It is noticeable that the
vortices are formed through the nozzle neck as the shear layers
develop due to the interaction between the air sucked in and the
air remaining. In addition, a shear layer on the diaphragm is found
throughout the complete strokes. Unsteady complex interactions
between the vortices and the shear layers exist inside the cavity.
Therefore, it is necessary to include the cavity and the stroke of
the diaphragm in the computation for an accurate simulation of
the synthetic jet flow rather than to omit them for the sake of
computational efficiency.

a) Phase averaged vertical velocity component b) Time averaged vertical velocity component

phase angle (deg)

v 
(m

/s
)

0 90 180 270 360
-40

-30

-20

-10

0

10

20

30

40 3-D exact model
2-D exact model
Transpiration BC, Ref [9]
Simple periodic BC at diaphragm, Ref [10]
PIV data

y (mm)

v 
(m

/s
)

0 5 10 15 20
0

2

4

6

8

10

12

3-D exact model
2-D exact model
Transpiration BC, Ref [9]
Simple periodic BC at diaphragm, Ref [10]
LDV
PIV

Fig. 1 Vertical velocity profiles near the slot exit component (3-D denotes three-dimensional, 2-D denotes two-dimensional, and BC denotes boundary

control).
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Figure 4 presents the time-averaged vertical velocity component
contour plots in planes normal and parallel to the slot. Figure 4a
shows that the jet maintains its integrity until y� 12 mm, and
suddenly gets wider due to viscous diffusion as found in Yao et al.’s
experiment [26]. The three-dimensionality of the flow can be seen
much more clearly in Fig. 4b. The edge effect begins to move toward
the center of the jet. These contour plots confirm Yao et al.’s finding

that the end effects become significant above approximately 8h,
where h is the width of the slot. Figure 5 shows four streamline plots
of the phase-averaged synthetic flowfields in the plane parallel to the
slot. In this figure, the ends of the slot are located at
16:8 mm. At
90 deg, a pair of vortices forms near the end of the slot. Subsequently,
they move upward with the jet as the phase angle increases to
180 deg. At the same time, the suction phase begins. The centers of

a) y = 1.0 mm b) y = 4.0 mm
x (mm)

v 
(m

/s
)

-2 0 2 4 6
-4

-2

0

2

4

6

8

10 3-D exact model
2-D exact model
Transpiration BC, Ref [9]
Simple periodic BC at diaphragm, Ref [10]
PIV data

x (mm)

v 
(m

/s
)

-2 0 2 4 6
-4

-2

0

2

4

6

8

10

3-D exact model
2-D exact model
Transpiration BC, Ref [9]
Simple periodic BC at diaphragm, Ref [10]
PIV data

Fig. 2 Time-averaged vertical velocity components.

a) Phase angle = 90° b) Phase angle = 180°

c) Phase angle = 270° d) Phase angle = 360°

Fig. 3 Phase-averaged vorticity contour plots.
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a) Phase angle = 90° b) Phase angle = 180°

c) Phase angle = 270° d) Phase angle = 360°
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Fig. 5 Phase-averaged streamline plots along the slot.
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the vortices, however, are located slightly farther outside than those
found in Yao et al.’s experiment. The suction region extends upward
at 270 deg.As can be seen from the 360 deg phase streamline plot, the
edge effect penetrates deeper into the center of the jet.

B. Case 2 of the CFDVAL2004 Workshop

The next computational examplewith the three-dimensional exact
model is case 2 of the CFDVAL2004 workshop. Unlike the previous
example, this is a truly three-dimensional flow. Schaeffler and
Jenkins conducted an experimental study of the flow [27,28]. A
synthetic jet through a circular orifice meets with a turbulent
crossflow. The synthetic jet is produced by the mechanical operation
of a rectangular piston that is located at the bottom of a cavity. A
flexiblemembrane is attached to the piston. Themembranemoves up
and down as the piston is oscillated with a frequency of 150 Hz. The
oscillating motion of the synthetic jet device consists of the rigid
motion of the piston and the elastic motion of the membrane. The
freestream is a fully developed turbulent flow with a boundary-layer
thickness of 21 mm. The freestream Mach number is 0.1. The
Reynolds number, based on the flow velocity and the diameter of the
orifice, is 14,150.

A block-structured grid is obtained from the workshop webpage.
The grid system has 28 blocks; the total number of grid points is
approximately 4.09 million. The wall spacing is no greater than
10�4 mm, which is the value of the original grids. The spacing is
reasonably small for theRANS simulation. Rumsey [29] conducted a
grid convergence test using the same grid system. He concluded that
the effect of grid refinement was small when compared to the
difference between the computational results and experimental data.
Because no other boundary-layer parameters except the boundary-
layer thickness are given at the inflow boundary, the problem of a
turbulent flow over a flat plate is solved numerically. The velocity
components, the temperature, and the turbulent flow variables at the
inflow boundary are specified with those determined from the
computation. The pressure, however, is extrapolated from the
computational domain. A nonreflecting far-field boundary condition
is specified at the outer boundaries except for the bottom wall. A
nonslip condition is specified along the bottom surface of the outer
region as well as along the boundary surfaces of the jet actuator. The
number of inner time steps for the dual time step is set to 60. The
number of time-accurate computations made per cycle is 720, as in
the previous case. For the unsteady computation, more than four
cycles are required for the periodic solutions.

The streamwise and the vertical velocity distributions at the orifice
exit are plotted in Fig. 6. Thevertical velocity component in Fig. 6b is

used to determine the amplitude of the oscillating piston so that the
peak of the vertical velocity is 1:5U1 [11]. The experimental data
and the computational results of Rumsey [29] are presented for
comparison. Rumsey used the K-! SST turbulence model for the
turbulent viscosity computation, and a three-dimensional version of
Cui’s boundarymodel [11] as a synthetic jet boundary condition. Our
computational results are in good agreement with the experimental
data as well as with Rumsey’s results. Figure 7 shows the time-
averaged velocity components at 1D upstream and 2D downstream
of the nozzle exit in the center plane. Here, D is the diameter of the
nozzle exit. The figures show that the three-dimensional exact model
performs well in predicting the velocity profile at the center plane.
Figure 8 depicts the phase-averaged velocity components at the
phase angle of 80 deg. Figure 8 indicates that the computational
results with the three-dimensional exact model are in close
agreement with the experimental results at 1D downstream and 8D
downstream of the nozzle exit. Comparisons of the contour plots
from the CFD results and the PIV results are made in Fig. 9. This
figure presents the time-averaged streamwise velocity contour plots
on the y-z plane at 4D downstream. The in-plane velocity vector is
also plotted using the velocity components in the y and z directions.
In the figure, a pair of counter rotating vortices formed around
z� 9 mm is well captured in the computation. Furthermore, the
distance between the vortex centers is predicted and found to be very
close to that of themeasured PIVdata. It is noticeable that thevortices
of the PIV data look asymmetric whereas the CFD result shows that
the pair of vortices is fairly symmetric. In Fig. 10, the phase-averaged
streamwise velocity contour plots are presented at 1D downstream
and in the center plane when the piston moves upward. As can be
seen in the figures, the freestream is perturbed by the outgoing jet
near the exit of the orifice. Although the contours show a flow
structure that is very similar to that of the experimental data, the
experimental result seems to be asymmetric and is inclined to the left.
On the other hand, the computation shows a very small sign of
asymmetry, as found in [29]. The asymmetry found in the experiment
could be related to the instability found in a steady jet in crossflow. A
strong enough steady jet flowing into a crossflow oscillates due to
flow instability [30]. Similar instability could occur in a synthetic jet
in crossflow. Figure 11 exhibits the phase-averaged streamwise
velocity component in the center plane. The figure clearly shows that
the jet bends due to the freestream.

C. Case 3 of the CFDVAL2004 Workshop

The last computational example that uses deforming mesh is case
3 of the CFDVAL2004workshop. The original experiment of Seifert

a) Streamwise velocity profiles b) Vertical velocity profiles
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Fig. 6 Phase-averaged velocity profiles at the nozzle exit.
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and Pack [31] was repeated by Greenblatt et al. [32,33] to provide a
complete data set that can be easily used for CFD validation. They
investigated the flow over a wall hump with oscillatory control and
steady suction or blowing. Oscillatory control was achieved with a
zero-efflux oscillatory jet introduced from the spanwise slot. The
model was mounted between two glass endplates, and both leading
and trailing edges were faired smoothly with a wind tunnel splitter
plate. It should be noted that the flow is two-dimensional except near
the endplates where sidewall effects exist [34]. Thus, a two-
dimensional RANS calculation is performed and a computational
geometry with a top wall shape is chosen to account for the blockage
effect, as was done by Rumsey [34]. The Reynolds number is one
million based on the chord length of the hump, c, and the freestream
velocity. The movement of the diaphragm is modeled in a manner
similar to that used in case 2, inwhich themotion consists of rigid and
flexible motions. The diaphragm is oscillated with a frequency of
138.5 Hz, and the maximum velocity at the orifice exit is
approximately 27 m=s. Rumsey [34] also investigated the effect of
grids on the flow. He concluded that grid 5 given on the workshop
homepagewas sufficient to adequately resolve the flow feature of the
hump model flow using URANS. The grid contains five zones and
53,013 grid points. For a time-accurate simulation, 720 computations
are made over a cycle and 60 inner time steps are used for the dual

time stepping. To obtain a periodic solution, more than ten cycles of
calculations are performed. Only the last cycle is used to calculate the
mean-time solutions for the comparison with the experimental data.
A nonslip boundary condition is specified at the floor and hump
surfaces, as well as at the solid walls inside the cavity. A fully
developed turbulent flow with a boundary-layer thickness of �=c�
0:073 is specified at x=c��6:39. A far-field boundary condition is
applied at the downstream boundary. The upper wall is treated as
inviscid. According to Rumsey’s research, the use of either an
inviscid or a viscous boundary condition on the top wall made little
difference [34]. A nonslip wall boundary condition is also specified
at the bottom of the cavity in the exact model.

In Fig. 12, the time-averaged surface pressure coefficients are
plotted along with the experimental result as well as with the result
for the boundary-condition model [34]. The figure shows the
development of an adverse pressure gradient before the leading
edge of the hump, the acceleration of the flow to x=c� 0:5 and
another relatively strong adverse pressure gradient that develops
before the location of flow separation at x=c� 0:65. The large spike
in the pressure coefficient distribution at the slot is caused by
flow acceleration around the upstream edge of the slot lip. The
computational results for the exactmodel aswell as for the boundary-
condition model agree well with the experimental data. The results

a) Streamwise velocity profiles at 1 D upstream 

c) Streamwise velocity profiles at 2 D downstream d) Vertical velocity profiles at 2 D downstream 
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b) Vertical velocity profiles at 1 D upstream

Fig. 7 Time-averaged velocity profiles at 1D upstream and 2D downstream of the nozzle exit.
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a) Streamwise velocity profiles at 1 D downstream b) Vertical velocity profiles at 1 D downstream 

c) Streamwise velocity profiles at 8 D downstream d) Vertical velocity profiles at 8 D downstream 
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Fig. 8 Phase-averaged velocity profiles at 1D downstream and 8D downstream of the nozzle exit, phase angle� 80 deg.

a) PIV measurement b) Computational result
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Fig. 9 Time-averaged streamwise velocity contour plots And in-plane velocity vector plots at 4D downstream of the nozzle exit.
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for the exact model are almost identical to the results for the simple
boundary-condition model. Some differences, however, exist in the
pressure coefficient distributions between the computations and the
experimental data for the separation region. The time-averaged
streamlines are illustrated in Fig. 13. Although the separation point is
relativelywell predicted by themethod, the reattachment point is not.
Table 1 summarizes the separation points and the reattachment points
predicted by the numerical methods.

The computational results with the exact model for three cases
of the CFDVAL2004 workshop suggest that the effect of the
boundary-condition model is not the sole source of uncertainty in the
synthetic jet flow computations. Rumsey conducted a computational
experiment in his URANS computation of case 3 in which the
turbulence viscosity was intentionally doubled inside the separation
bubble. The modification drastically improved the prediction of the
reattachment point. Therefore, he concluded that the deficiency in the
standard turbulence model was likely to blame for the overpredicted
bubble size. The results of his numerical experiment can also be
interpreted in such a way as to say that the effect of the turbulence
modelwould be another source of uncertainty in the synthetic jetflow
computations. It would be an interesting research topic to compute

a) PIV measurement b) Computational result
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Fig. 10 Phase-averaged streamwise velocity contour plots at 1D downstream of the nozzle exit, phase angle� 120 deg.

a) PIV measurement b) Computational result
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Fig. 11 Phase-averaged streamwise velocity contour plots at the center plane, phase angle� 120 deg.
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Fig. 12 Time-averaged surface pressure coefficient distributions.
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synthetic jet flows with high-order turbulence models such as large
eddy simulation (LES) or hybrid RANS-LES models in conjunction
with the exact model with deforming mesh.

The vorticity contour plots are presented in Fig. 14 at two phase
angles. It is clear that the vortices generated by the jet are convected
downstream and dissipated. The repeated process of vortex roll-up
and shedding is known to effectively reduce the separation bubble
size [34]. Figure 15 shows the phase-averaged pressure coefficients
behind the hump at the same phases as those in the previous figure.
The computational results predict the strength and location of the
shed vortices well. However, the pressure coefficient levels tend to be
somewhat lower in magnitude than the measured values for 0:65<
x=c < 0:8 and higher than themeasured values for 0:95< x=c < 1:1.

Figure 16 shows the phase-averaged streamwise velocity profiles at
three locations. At x=c� 0:66, which is just downstream of the slot,
the flow is still attached in the time mean. At the blowing phase of
170 deg, the velocity profile indicates that the flow near the slot is
perturbed by the influence of the fluid expulsion from the slot. The
velocity at an inflection of the profiles is underpredicted at both
phases. At x=c� 0:8, which is in themiddle of the separation region,
the computations predict the velocity profiles well. At x=c� 1:0, the
computational velocity profiles indicate that the flow still remains
separated, but the experimental result indicates that the flow has just
attached. This disagreement can be understood to stem from the
difference in the location of the flow reattachment, as can be seen in
Fig. 13.
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Fig. 14 Instantaneous vorticity contour plots.

Fig. 13 Time-averaged streamlines.

Table 1 Separation and reattachment points

Condition Model Separation point (x=c) Reattachment point (x=c)

Experiment 0.67 0.99
Oscillatory (mean) [34] 0.663 (1.0%) 1.22 (23.2%)
Oscillatory (mean) Exact model 0.664 (0.9%) 1.20 (21.2%)
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a) Phase angle = 170° b) Phase angle =350°
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Fig. 15 Phase-averaged pressure coefficient distributions.
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Fig. 16 Phase-averaged streamwise velocity profiles.
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VI. Conclusions

In this paper, simulations using deforming mesh for synthetic jet
flows into quiescent air, into a turbulent crossflow, and into a
turbulent separatedflowover a humpwere discussed. To facilitate the
deformation of mesh inside the cavity of a real jet actuator, a
transfinite interpolation method was used. With the automatic grid
generation, the time-dependent Reynolds-averaged Navier–Stokes
equations were solved for the flowfield induced by synthetic jets.
Simultaneously, the volumes of the deforming cells were evaluated
using the geometric conservation law. All three cases of the Langley
Research Center Workshop Computational Fluid Dynamics
Validation of Synthetic Jets and Turbulent Separation Control
workshop were successfully computed using the deforming mesh
without any boundary-condition models. The computed results were
shown to be in good agreement with the previously published results,
as well as with the experimental results. The three-dimensionality
due to the edge effect of the slot in case 1 was computationally
confirmed. Also, it was suggested that a high-order turbulencemodel
such as large eddy simulation or hybrid Reynolds-averaged Navier–
Stokes–large eddy simulation should be employed in conjunction
with the exact model.
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